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1. Eliminate octupole terms.

It turns out that the theorem of corresponding motions, mentioned in

Ref. 1, is true only if we rest ric t the equations of motion to linear and
sextupole terms. It is not necessary to work in a regime where the theorem

holds, but it has two big advantages. It allows an easy check (see if the

theorem holds) on whether there are important terms we are not keeping in the

analysis. It also means we can survey the entire neighborhood of the

resonance intersection by surveying a semicircle around the intersection. I

will assume that we choose the intersection Vx = 7 1/6, Vz = 7 1/3 as

suggested in Ref. 1, and that we maintain the validity of the theorem of

corresponding motions.

Only the two third-integral resonances 3 Vz = 22 and 2 Vx - Vz = 7 may

then enter the equations. We do not want any octupole terms. Since the

frequency vs amplitude terms are DC terms of octupole order, we must adjust

the main sextupoles to reduce the frequency shift vs amplitude so that

frequency shifts are negligible out to the dynamic aperture, or at least so

that they are dominated by the effects of the resonance terms.

2. Character of the Motion.

In Fig. i, I show the relevant portion of the tune diagram, i.e., near

the resonance intersection. The origin is taken at the intersection, with

axes

s
x

v - 7 1/6
x

s
z

v - 7 1/3
z (2.1 )

The two resonance lines are shown, corresponding to the resonances
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3v ~ 22,
z

(2.2)
2v - v = 7.x Z

Also sketched is a semicircle around which we want to survey the character of

the motion. The semicircle is presumed close enough to the intersection so

the theorem of corresponding motions holds. The dashed lines are the

bisectors of the angles between the resonance lines. The quadrant (d,e)

within these bisectors is expected to be dominated (more or less) by the

resonance 3 Vz = 22. The other quadrant (a,b,c) is expected to be dominated

by the difference resonance. We will see that in the quadrant (b, c,d) where

Ex and Ez have the same sign, the motion is stable at small amplitudes. In

the other quadrant (a,e), where Ex and Ez have opposite signs, the constant of

the motion turns out to be indefinite even at infinitesimal amplitudes, so we

can say nothing definite about the stability.

We expect that near the resonance 3 Vz = 22, there will be a threshold

ins tabili ty amplitude zs' depending on E z' above which the z-mot ion will be
unstable. Whether this is true throughout the regions d and e, and what role

the x-motion plays, is to be determined by tracking.

In regions band c, we expect the difference resonance will have a

threshold z-amplitude Zt above which small amplitude x-motion is unstable and

exchanges energy with the z-motion. The constant of the motion will also give

us an amplitude za above which the amplitudes are energetically allowed to

grow indefinitely. If Zt ) za' then if the experience described in Ref. 2 is

a guide, if we start with a very small x-amplitude, and let the z-amplitude

increase, we expect the motion to remain stable until Z Zt' beyond which the

x-motion will grow because of the coupling resonance, and then become unstable

because we are above the stability limit. If Zt ( za' as it certainly will be

very near the difference resonance, then for z ) Zt' there will be x-z

coupling, but the amplitudes cannot grow large until z ) za. The experience

described in Ref. 2 suggests that just above za' there will be a very narrow

pass in phase space leading into the large amplitude region, so that the

motion may appear to be stable for many revolutions before suddenly growing to

a large amplitude. This is the place where tracking methods may fail; the
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failure can be recognized by the fact that the apparent dynamic aperture
becomes an erratic function of the initial conditions. As zincreases above

za' the pass opens up, and the number of turns to become unstable decreases

rapidly, so that tracking a few turns discloses the instability.

In region a, instability may energetically occur at very small

amplitudes, but the experience of Ref. 2 suggests that it probably does not,

in fact, occur until the threshold Zt for the difference resonance is

exceeded. These speculations need to be confirmed by tracking studies.

3. Analysis of the motion.

In the neighborhood of the resonance intersection, we can write a

Hamiltonian which contains the relevant terms. It is convenient to write it

in terms of the angle-action variables for the linear motion:

H v J + v J + A(2J )3/2sin (3y - 226) + B(2J )1/2(2J )sin(2Y - y _ 76)xx zz z z x z x z
+ L CJ 2 + DJ J + L EJ 2 + FJ J sin(2Y + 2y - 296).2 x xz 2 z xz z x (3.1)

The independent variable here is 6 = 2TIs/C, where C is the circumference of

the reference orbit. The argument of each sine should contain a constant

phase, but they are omitted here, as they are irrelevant for our

considerations. For each degree of freedom, we may also introduce a

rectangular coordinate and momentum via the equations

Q (2J) 1/2siny,
p = (2J) 1/2cOSY. (3.2)

Since the transformation (3.2) is canonical, the Hamiltonian (3.1) may also be

written in terms of the canonical variables Qx' P x' Qz' P z. Note that Q, P

can be regarded as rectangular coordinates, and (2J)1/2, y as polar

coordinates in the phase space for each degree of freedom. I have included

also tune-shifting terms and the octupole term which drives the fourth-order
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resonance through the intersection. These terms will be dropped later. We

will use the Hamiltonian (3.1) to study the character of the motion. In order

to relate the thresholds we derive to actual experiments ~ it will be necessary

to start from the real Hamiltonian for Aladdin, make the necessary

transformations to angle-action variables, and thus identify the coefficients

A and B in terms of Aladdin parameters~as well as to determine th.e scaling
between the variables P, Q, and the experimental variables x~ x' ~ 2,2 '. I

will not take the time to carry out this development here.

We can eliminate the 8-dependence by transforming to coordinates rotating

in each phase space at the frequencies Vx == 7 i/6, Vz == 7 i/3 corresponding to
the intersection. We use the generating function

S == Ji (Yx -(7 1/6)8) + JZ(Yz -(71/3)8), (3.3 )

which leads to the equations

J as Ji J as
== == = = Jz ~x ay z ay

x z

3 s
-(7 i/6) 8,

3s
-(7 1/3) 8. (3.4 )

y 1
== aJi == y yz

=
3J2

== Yx z

The Hamiltonian becomes

3sHi == H + 3e

== ExJi + EzJZ + A(ZJ2)3/2sin 3Yz + B(ZJi) (ZJz)1/ZSin(2Yi - Yz)i Z i z
+ '2 CJi + DJiJz + '2 EJZ + FJiJzsin(ZYz + 2Yi), (3.5)

where
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s ~ v - 7 1/6, €x X Z v - 7 1/3.
z (3.6)

The new Hamiltonian is independent of e and is therefore a constant of the

motion. It is easily verified that if we keep only the terms in the second

line, then if Sx and Sz are each changed by a factor a, and if the JIS are

changed by a factor a2, and e by a factor l/a, the resulting equations of

motion are the same as those given by Hi for a = 1. This is the theorem of

corresponding motions. It would not hold if we keep the terms in the third

line. A corresponding theorem would hold, with a different scaling of J, if

we had only linear and octupole terms (third line).

We now drop the octupole terms:

3/2 i/2H2 = €xJi + szJ2 + AC2J2) sin 3Y2 + B(2Ji) C2J2)sin(2Yi - Y2). (3.7)

In rectangular coordinates:

HZ = l SxCPi2 + Qi2) + l EzCP22 + Q22) - AQZ3 + 3AQ2P22

2 Z
+ B(Qi Q2 - Pi Q2 + 2QiPiPz). (3.8)

If we choose a working point near the resonance 3 Vz = 2Z, i.e., near the

sz-axis (sz = 0), then we may expect this resonant term will dominate, and we

may neglect the difference resonance term, to get the approximate Hamiltonian

3/2H3 = sxJi + szJ2 + A(2JZ) sin(3YZ). (3.9)

Ji is now also a constant of the motion, and the problem can be solved exactly

by the energy method. Curves of constant H3 (- Sz Ji) are plotted in the Q2'

P2 phase plane in Fig. 2. (Yes, Virginia, there is a Santa Claus; Eq. (3.9)
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factors on the separatrix into a product of three straight lines 0) The motion

is stable out to the separatrix,
The fixed points are given by

Js = E: Z/18A 2
z

Qs E: z/3A,

P s = 113 E: 16A I .z

beyond which it grows to large amplitudes.

(3.10)

The figure is drawn for the case when E:z and A have the same sign. At the

resonance E:z = 0, the motion is unstable even at infinitesimal amplitudes, and

even though the resonance is driven by a nonlinear term and the linear

equations are stable! Otherwise, for small QZ' PZ' the energy is positive

definite, and the motion is stable. The dynamic aperture is given by IQsl'

scaled to the experimental variable z. In Fig. 3, Qs is plotted around the

semicircle of Fig. 1.

It is easy to solve the equations of motion for the case E:z = 0, for

motion out along the separatrix. The result is

Jz = J (1 - lZ 12 AJ 1/28)-2.o 0 (3.11)

For small initial Jo' the growth is very slow at first, but eventually the

amplitude grows very rapidly, going to infinity at a finite value of 8. The

solution (3.11) is also approximately valid for growth along a separatrix in

Fig. 3, far from the fixed point.

Note that the above discussion is step 1 of the first set of experiments

sugges ted in Ref. 1, except for scaling to experimental parameters.

A similar discussion can be given for motion near the difference

resonance, in which we neglect the third term in Eq. (3.7), and transform to

an angle variable Y c = 2y 1 - Y 2. The result is that there is no coupling at
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small amplitudes of the x motion (Qi, Pi). The threshold for coupling is

Jt
(Zs.. - s )ZA Z

8B2
(3.12 )

2s - s )
Qt = I \B Z I

Above this threshold, the coupling is strong, so that a small initial

x-amplitude ~ill grow until all the energy is in the x-motion. following which

the amplitudes will oscillate as the energy is exchanged between the two

degrees of freedom. In Fig. 3, Qt is plotted around the semicircle of Fig. 1.

We now consider the case when both resonance terms in Eq. (3.7) are
important. We then have only the one constant H, given by Eq. (3.7) or
(3.8). If E: and E: z have opposite signs (quadrant (a, e) in Fig. 1), then evenx
the quadratic terms, which lead to the linear terms in the equations of
motion, are of indefinite sign. The constancy of H then gives no information

about the stability of the motion. If E:x and E:z have the same sign, then the

quadratic terms have a definite sign (positive definite for the quadrant

(b,c,d) in Fig. 1), and the motion must be stable at small amplitudes.

In order to analyze the latter case, we divideH 
into a kinetic and a

potential energy:

HZ TZ + V2, (3.13 )

where

1 2 1 2TZ = 2 (E:x - 2BQZ)P1 + 2 (E:z + 6AQz)P2 +2BQ1PiP2' (3.14)

Vz = 1: E: Q Z + 1: E: Q 2Z x 1 Z z 2 AQ23 + BQ1 ZQ2 . (3.15)
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It is convenient to scale the variables in the following way. We first

make the following definitions:

€ = € cos/;, €X Z € sin!;, "" "I""
i..). .10)

A = K cosß, B = K sinß. (3.17)

We then introduce scaled variables as follows:

Qi (€/K)qi' Q2 = (€/K)qi' PI = (€/K)pl' Pz (E/K)pZ' (3.18)

6 = T /E. (3.19)

The scaled Hamiltonian for the motion as. a function of the scaled independent

variable T is

hZ = t + v2 · 2' (3.20)

with

i 2 1 Ztz =2(cos/; - 2sinßaZ)P1 + "2(sini; + 6 cosßqZ)PZ + 2sinßq1PiPZ' (3.21)

1 2 1 2 3 2
v2 = "2 cOSl;ai + zsini;Q2 - cosßq2 + sinßQ1 q2. (3.2Z)

The theorem of cor res ponding motions is now explici tly .exhi bi ted. The motion

of the scaled variables depends only on the angle /; (Fig. 1)) and on the angle
ß (essentially on the ratio A/B). As noted above) we are concerned only with

the case when /; is in the first quadrant. Reversing the signs of both sinS

and cosß is equivalent to reversing the signs of both axes. so we may restrict

ourselves to the case when ß is in the firs t or second quadrant.
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As long as hZ increases with amplitude, the motion will be absolutely

stable. In the first (and third) quadrant in Fig. 1, for small enough qi' aZ'

the kinetic energy is positive definite, and increases with PI and PZ. In

this case, we can study the stability by studying the potential energy.

The potential v2 has four fixed points, (equilibrium points of the

motion), given by

ai = q2 = 0, (3.23)

qi 0, qz =
sinl;
3cos13 ' (3.24)

and

q2
cosl;
2sinl3' qi

~ (Zsin1;cos1;) 1!2 3 1!22sinS (l + '2 cot1;cotS) . (3.25)

To determine the nature of the fixed points, we examine the discriminant

82 2v2

(8q8q)-
1 2

2 2
8 v2 8 v24--=Z 28qi dq2

-4fsin1;cos1; + 2sin1;sinS(1-3cot1;cotS)q2

-12 sinßcos13Q22 - Sin2Sq121. (3.26)

The fixed point at the origin is elliptic. If tan 13 ) 0, the other three are

hyperbolic. (The sign of tan 13 is the same as the sign of cosS, in the first

two quadrants.) If tanS ( -(3!2)cotZ;, fixed point (3.24) is hyperbolic, and
the two points (3.25) do not exist. If -(3!2)cotZ; ( tanS ( 0, the point

(3.24) is elliptic, and the other two (3.25) are hyperbolic.



10

At large values of q l' qz the cubic terms in v2 are dominant:

2 Z
Vz +q2 (sinBqi - cosBqZ)' (3.27 )

except near the asymptotes

qz = 0 and qz
1/2

f(tanB) q1. (3.28)

In Fig. 4 contour plots of v2 (qi1 qZ) are sketched for the three cases.

The kinetic energy (3.21) is positive definite provided that the

discriminant

4SinZBq1Z + lZsinBcosB(Q2 - 4~~~~ (1-1 tan ßtanç)J2 -cosÇsinÇ

3 Z 1 2
- ~otß cos ç (1 - 3tanB tanç) (0. (3.Z9)

This condition is satisfied inside the circle defined by the left member. The

circle is sketched in Fig. 4. In Fig. 4, we show the circle as lying entirely

outside the inner separatrix. but for some values of ß and ç. the circle may

intersect the inner separatrix. If the circle (3.Z8) lies outside the inner

separatrix. then the separatrix represents the limiting value of hZ inside

which the motion mus t be stable. If the circle crosses inside the separatrix.

then the limiting value of hZ is given by the value of v2 for the inner

contour which is tangent to the circle.

In Fig. 3,1 have. sketched the value of Q2 = qz/K, corresponding to the

fixed point on the inner separatrix in Fig. 4. To be precise. we should take

QZ at the point where the inner separatrix crosses the q2-axis i or. if the

circle (3.28) crosses the separatrix. then at the point where the tangent v2

contour crosses the qz-axis; that would require more calculation than I am

prepared to do at this point. In the quadrant (bi c id), this represents a
lower limit on the dynamical aperture. If the amplitude exceeds this limit i
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then it is "energetically" possible for the amplitudes to grow large. Unless

the orbit is kept away from the pass over the fixed point, for example due to

lack of coupling, we expect the motion to be unstable. However, if the

amplitude only slightly exceeds the limit, then the opening through the pass

in the constant HZ surface will be very small. In that case, unless the orbit

is aimed at the fixed point, it may take a long time for the orbit to find it

as it wanders over the constant HZ surface. See the previous section for

further discussion of this point.

4. Conclusion.

The above discussion is sufficient to show that experiments in the

neighborhood of the intersection of the resonances (2.2) should exhibit a

number of interesting behaviors. It remains to relate the variables Q,P to

the experimental variables in Aladdin. and to determine the actual values of

the coefficients A.B. In the interest of getting this report out as early as
possible, I have not double-checked my calculations. If we decide to carry

out the proposed experiments. the above calculations should be completed and

carefully rechecked.
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